Interpolation inequalities in generalized Orlicz-Sobolev spaces and applications

نویسندگان

چکیده

Abstract Let m ∈ N m\in {\mathbb{N}} and be a generalized Orlicz function. We obtained some interpolation inequalities for derivatives in Orlicz-Sobolev spaces W , φ ( mathvariant="double-struck">R n ) {W}^{m,\varphi }\left({{\mathbb{R}}}^{n}) . As applications, we established compact Sobolev embedding on domain Landau-Kolmogorov-type inequality spaces. And introduced the \varphi -capacity studied of its properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation Inequalities in Weighted Sobolev Spaces

In this paper we prove some interpolation inequalities between functions and their derivatives in the class of weighted Sobolev spaces defined on unbounded open subset Ω ⊂ Rn .

متن کامل

Optimal Domain Spaces in Orlicz-sobolev Embeddings

We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...

متن کامل

Korn Inequalities In Orlicz Spaces

We use gradient estimates for solutions of elliptic equations to obtain Korn’s inequality for fields with zero trace from Orlicz–Sobolev classes. As outlined for example in the monographs of Málek, Nečas, Rokyta, Růžička [MNRR], of Duvaut and Lions [DL] and of Zeidler [Ze], the well-posedness of many variational problems arising in fluid mechanics or in the mechanics of solids heavily depends o...

متن کامل

Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

We develop a constructive piecewise polynomial approximation theory in 1 weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The 2 main ingredients to derive optimal error estimates for an averaged Taylor polynomial 3 are a suitable weighted Poincaré inequality, a cancellation property and a simple 4 induction argument. We also construct a quasi-interpolation operator, b...

متن کامل

Maximal inequalities for dual Sobolev spaces W − 1 , p and applications to interpolation

We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2023

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0595